viernes, 22 de agosto de 2008

MOTOR ELECTRICO


Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. La mayoría de los motores eléctricos son reversibles, es decir, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.
Son ampliamente utilizados en instalaciones industriales, comerciales y de particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Una batería de varios kilogramos equivale a la que contienen 80 g de gasolina. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.
Principio de funcionamiento
Los motores de corriente alterna y los motores de corriente directa se basan en el mismo principio de funcionamiento, el cuál establece que si un conductor por el cual circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.

El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor.

Partiendo del hecho que cuando pasa corriente eléctrica por un conductor se produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.

Motores de corriente continúa

Diversos motores eléctricos
Los motores de corriente continua se clasifican según la forma como estén conectados, en:

• Motor serie
• Motor compound
• Motor shunt
• Motor eléctrico sin escobillas

Además de los anteriores, existen otros tipos que son utilizados en electrónica:

• Motor paso a paso
• Servomotor
• motor sin núcleo


Motores de corriente alterna

Los motores de C.A. se clasifican de la siguiente manera:

Asíncrono o de inducción

Los motores asíncronos o de inducción son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.

Jaula de ardilla

Fundición de aluminio de una jaula de ardilla-Envuelto en hojalata (con una pieza cilíndrica en el medio) en un motor con polos en una hendidura. las varillas de aluminio de la jaula pasan por el interior. En los laterales del frontal están las aletas de la ventilación adicional, fundidas junto con en el conjunto. El devanado superior y el cojinete del motor están ocultos.

Monofásicos

• Motor de arranque a resistencia.
• Motor de arranque a condensador.
• Motor de marcha.
• Motor de doble capacitor.
• Motor de polos sombreados.

Trifásicos
• Motor de Inducción.
A tres fases
Rotor Devanado
Monofásicos
• Motor universal
• Motor de Inducción-Repulsión.
Trifásicos
• Motor de rotor devanado.
• Motor Asíncrono
• Motor Síncrono
Síncrono
En este tipo de motores y en condiciones normales, el rotor gira a las mismas revoluciones que lo hace el campo magnético del estator.
Trifásicos
• Motor de rotor derivado de los motores de aviones jet.

Funciones de Motores de corriente continúa

Motor serie

Un motor serie es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura.
Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas rápidamente.

Motor compound

Un motor compound (o motor de excitación compuesta) es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar.
Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura.
El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo.
Esto provee una característica de velocidad que no es tan “dura” o plana como la del motor shunt, ni tan “suave” como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.
El motor compound es un motor de excitación o campo independiente con propiedades de motor serie. El motor da un par constante por medio del campo independiente al que se suma el campo serie con un valor de carga igual que el del inducido. Cuantos más amperios pasan por el inducido mas campo serie se origina claro está siempre sin pasar del consumo nominal.

Motor shunt

El motor shunt o motor de excitación paralelo es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducido e inductor auxiliar.
Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.
En el instante del arranque, el par motor que se desarrolla es menor que el motor serie, (también uno de los componentes del motor de corriente continua). Al disminuir la intensidad absorbida, el régimen de giro apenas sufre variación.
Es el tipo de motor de corriente continua cuya velocidad no disminuye más que ligeramente cuando el par aumenta. Los motores de corriente continua en derivación son adecuados para aplicaciones en donde se necesita velocidad constante a cualquier ajuste del control o en los casos en que es necesario un rango apreciable de velocidades (por medio del control del campo). El motor en derivación se utiliza en aplicaciones de velocidad constante, como en los accionamientos para los generadores de corriente continua en los grupos motogeneradores de corriente directa.

Motor eléctrico sin escobillas
Un motor eléctrico sin escobillas es un motor eléctrico que no emplea escobillas para realizar el cambio de polaridad en el rotor.
Los motores eléctricos solían tener un colector de delgas o un par de anillos rozantes. Estos sistemas, que producen rozamiento, disminuyen el rendimiento, desprenden calor y ruido, requieren mucho mantenimiento y pueden producir partículas de carbón que manchan el motor de un polvo que, además, puede ser conductor.
Los primeros motores sin escobillas fueron los motores de corriente alterna asíncronos. Hoy en día, gracias a la electrónica, se muestran muy ventajosos, ya que son más baratos de fabricar, pesan menos y requieren menos mantenimiento, pero su control era mucho más complejo. Esta complejidad prácticamente se ha eliminado con los controles electrónicos.
El inversor debe convertir la corriente alterna en corriente continua, y otra vez en alterna de otra frecuencia. Otras veces se puede alimentar directamente con corriente continua, eliminado el primer paso. Por este motivo, estos motores de corriente alterna se pueden usar en aplicaciones de corriente continua, con un rendimiento mucho mayor que un motor de corriente continua con escobillas. Algunas aplicaciones serían los coches y aviones con radio control, que funcionan con pilas.
Otros motores sin escobillas, que sólo funcionan con corriente continua son los que se usan en pequeños aparatos eléctricos de baja potencia, como lectores de CD-ROM, ventiladores de ordenador, cassetes, etc. Su mecanismo se basa en sustituir la conmutación (cambio de polaridad) mecánica por otra electrónica sin contacto. En este caso, la espira sólo es impulsada cuando el polo es el correcto, y cuando no lo es, el sistema electrónico corta el suministro de corriente. Para detectar la posición de la espira del rotor se utiliza la detección de un campo magnético. Este sistema electrónico, además, puede informar de la velocidad de giro, o si está parado, e incluso cortar la corriente si se detiene para que no se queme. Tienen la desventaja de que no giran al revés al cambiarles la polaridad (+ y -). Para hacer el cambio se deberían cruzar dos conductores del sistema electrónico.
Un sistema algo parecido, para evitar este rozamiento en los anillos, se usa en los alternadores. En este caso no se evita el uso de anillos rozantes, sino que se evita usar uno más robusto y que frenaría mucho el motor. Actualmente, los alternadores tienen el campo magnético inductor en el rotor, que induce el campo magnético al estator, que a la vez es inducido. Como el campo magnético del inductor necesita mucha menos corriente que la que se va generar en el inducido, se necesitan unos anillos con un rozamiento menor. Esta configuración la usan desde pequeños alternadores de coche hasta los generadores de centrales con potencias del orden del megavatio.

Motor paso a paso

El motor de paso a paso es un dispositivo electromecánico que convierte una serie de impulsos eléctricos en desplazamientos angulares discretos, lo que significa es que es capaz de avanzar una serie de grados (paso) dependiendo de sus entradas de control. El motor paso a paso se comporta de la misma manera que un convertidor digital-analógico y puede ser gobernado por impulsos procedentes de sistemas lógicos.
Este motor presenta las ventajas de tener alta precisión y repetibilidad en cuanto al posicionamiento. Entre sus principales aplicaciones destacan como motor de frecuencia variable, motor de corriente continua sin escobillas, servomotores y motores controlados digitalmente.
Existen 3 tipos fundamentales de motores paso a paso: el motor de reluctancia variable, el motor de magnetización permanente, y el motor paso a paso híbrido.

Servomotor

Un servomotor (también llamado Servo) es un dispositivo similar a un motor de corriente continua, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable en dicha posición. Está conformado por un motor, una caja reductora y un circuito de control. Los servos se utilizan frecuentemente en sistemas de radio control y en robótica, pero su uso no está limitado a estos. Es posible modificar un servomotor para obtener un motor de corriente continua que, si bien ya no tiene la capacidad de control del servo, conserva la fuerza, velocidad y baja inercia que caracteriza a estos dispositivos.

Motor sin núcleo

Cuando se necesita un motor eléctrico de baja inercia (arranque y parada muy cortos), se elimina el núcleo de hierro del rotor, lo que aligera su masa y permite fuertes aceleraciones, se suele usar en motores de posicionamiento (p.e. en máquinas y automática).
Para optimizar el campo magnético que baña el rotor, para motores que requieren cierta potencia, se puede construir el rotor plano en forma de disco, similar a un circuito impreso en el que las escobillas rozan ortogonalmente sobre un bobinado imbricado que gira entre imanes permanentes colocados a ambos lados del disco.

1 comentario:

Unknown dijo...

¿por que la corriente de excitacion de un motor de induccion es tan elevada?